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Abstract  This paper is an extension of the work published in year 2010 in which compressive strength of plain 

concrete confined with Ferrocement was estimated using mathematical models and compared with 55 experimental 

results. In this paper, predictive model of compressive strength for plain concrete confined with Ferrocement has 

been developed by using MATLAB Artificial Neural Network (ANN) simulation. Out of 55, 19 experimental results 

are selected for training of multilayer feed forward neural network. Comparative analysis of the results showed that 

compressive strength estimated by ANN predictive model are very close to the experimental results than existing 

theoretical models. 
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1. Introduction 

Artificial Neural Network (ANN) is a sub-domain of 

artificial intelligence system, which has been used 

progressively since last few years, to solve wide variety of 

problems in civil engineering applications [1-8]. This 

informational system is originated from the field of 

biology to simulate a biological neural network by 

interconnecting neurons of a brain; however in 1994, 

engineering definition of ANN has been defined by as a 

computational mechanism capable of acquiring and 

working out mapping from a multivariate space of 

information to another by giving a set of data representing 

that mapping [9]. 

The most important property of ANN, which makes it a 

preferable tool, is its ability of learning directly from 

examples. Therefore, when rules to solve a problem are 

not known, or difficult to discover, or conventional 

computing techniques like regression analysis are very 

hard to apply, then ANN is very helpful to solve problem 

[10] as it adapts according to new data and can retrain 

again; however, it needs sufficient input-output data to 

include the effect of all parameters [11]. The other 

important features of ANN include its correct or nearly 

correct response to incomplete tasks and extraction of 

information from noisy or poor data; therefore ANN can 

be applied on an imperfect, fuzzy or strident data due to its 

learning ability [10]. In Civil Engineering, ANN tool has 

been applied in various facets such as tidal level 

forecasting [12], earthquake-induced liquefaction [13], 

wave-induced seabed instability [14], ultimate bearing 

capacity of soil [15], prediction of compressive strength 

[8,11,16-19], slump [20] and workability of concrete [21] 

etc., and has been found very promising tool.  

Multilayer feed forward with back-propagation is the 

mostly applied network technique in civil engineering and 

using this technique, slump of ready mixed concrete and 

strength of concrete has been predicted [21]. Moreover, a 

neural network model has also been developed to predict 

the workability of concrete incorporating Metakaolin (MK) 

and fly ash (FA) [1] and about 98% accuracy has been 

achieved in prediction of compressive strength of concrete 

containing Metakaolin and silica fume [17]. Therefore, 

due to diversity of ANN, it seems that this tool can be 

applied to other fields in civil engineering as well. 

In 2010, one of the authors of current research paper 

published a paper [22] in which three (03) mathematical 

models of compressive strength available in literature, had 

been used to estimate the strength of plain concrete 

confined with Ferrocement, and mathematical results had 

been compared with experimental results. However, 

current paper aims at the development of a predictive 

model of compressive strength for plain concrete confined 

with Ferrocement with the help of the data that has been 

used previously [22] using Matlab Artificial Neural 

Network (ANN) tool. Results generated by ANN 

predictive model have been compared with the results of 

mathematical models and experimental results. 

Authors [22] compiled details of the parameters of plain 

concrete confined with Ferrocement after referring four 

(04) studies [23,24,25,26]. Details of the parameters has 

been mentioned in Table 1 which includes cylinder and 
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core dimension, no. of Ferro-mesh layers, wire diameter 

and spacing, yield strength of the wire of Ferro-mesh and 

unconfined compressive strength. Three types of 

confinement of Ferrocement has been provided by the 

authors to the plain concrete [23,24,25,26], which includes 

Integrally cast Ferro-mesh layers [23,24,25], Ferro-mesh 

layer in precast shell [23] and Wrapped Ferro-mesh layer 

on precast core [23,26]. 

2. Mathematical Models of Compressive 

Strength of Plain Concrete Confined with 

Ferrocement and Their Results 

Till date, three theoretical equations for compressive 

strength of plain concrete confined with Ferrocement have 

been proposed in literature [23,24,25] which have been 

used to develop in a general form [22] as follows: 

 ct cu tf f f   (1) 

Where, “fct” is the theoretical compressive strength of 

concrete confined with Ferrocement. “fcu” is the 

unconfined compressive strength (i.e. cylinder strength) of 

plain concrete determined after testing and “ft” is the 

tensile pressure caused by Ferro-mesh layers due to 

confinement. Theoretical equations proposed by the 

researchers [23,24,25] has been defined and elaborated 

underneath: 

2.1. Mathematical Model Proposed by 

Waliuddin and Rafeeqi [23] 

Waliuddin and Rafeeqi proposed following equation for 

the strength of concrete confined with Ferrocement: 

 ct cu yf f Kf   (2) 

Where, 

 
m g pK K K K  (3) 

Values of Km depends on the method of attachment of 

Ferrocement. For integrally cast Ferro-mesh layers, value 

of Km has been suggested as “1”; however, for wrapped 

Ferro-mesh layers impregnated with mortar and for 

already cast shell with Ferro-mesh layers, the value of Km 

has been suggested as 0.88 and 0.83.Kg is the coefficient 

to account for the grade of concrete and has been 

suggested by Waliuddin and Rafeeqi as 1, whereas 

35p rK K  and ρ is the volume fraction of transverse 

wires taken over all shell area and Kr is the ratio of 

cross sectional to surface area of the shell. 

2.2. Mathematical Model Proposed by 

Balaguru [24] 

Balaguru proposed following theoretical equation for 

the confining pressure: 

 
22

( / )
R

p psi N mm
d

   (4) 

Where, “d” is the diameter of cylinder. The confining 

pressure (ft) is denoted by “p” in the preceding equation. 

The ring pressure “R” has been given by following 

equation: 

 / ( / )
p

R lb in N mm
l

  (5) 

Where “l” is the height of cylinder. 

The force “P” exerted by the transverse wires is given 

as 

 S yP A f  (6) 

Where As is the cross sectional area of all the wires 

across the height of cylinder and fy is the yield strength of 

the wire. 

2.3. Mathematical Model Proposed by 

Kaushik and Singh [25] 

Kaushik and Singh [25] proposed equation for PM based 

on the analytical model of Mander et al. [27] to evaluate 

the strength of axially loaded cylinders confined with 

Ferrocement and/or containing longitudinal reinforcement. 

The equation is: 

 2

0 1( ( ) ( )
2

ys

M M f C st s c

w
P R R K V R R A Y        (7) 

Where: 

R= Radius of column, 0  is the strength of unconfined 

concrete, RM is the radius of Ferro-mesh layer (mean 

radius), K1 is taken as 4.2 as this value was found to be 

reasonably accurate, Rc= is the radius of core concrete, 

Wys is the mean yield stress of single wire, Ast is the cross 

sectional area of longitudinal rebar, Ys is the yield strength 

of longitudinal rebar, c is the strength of confined 

concrete and Vf is the volume fraction of mesh in the 

casing and is given as 

 
22 / ( ( ))f r m p cV w n S R R     (8) 

Where: 

Wr is the radius of the wire of Ferro-mesh, nm is the no.s of 

Ferro-mesh layer and Sp is the perimeter of the confined. 

Eq. 7 has been used by the authors [22] in following form: 

 /ct cu Mf f P A   (9) 

Where, A is the area of cylinder. 

3. Development o Prediction Model using 

Matlab Artificial Neural Network (ANN) 

Generally, ANN is comprised of three layers that are 

input layer, one or more hidden layer and output layer. 

Layers between input and output layers is called hidden 

layer as it contains bulk number of hidden processing 

units [4]. The input layer of neurons gets information from 

the outside atmosphere and transmits it to the hidden layer 

of neurons without computation [28,29]. In order to 

construct predictive model of compressive strength of 
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plain concrete confined with Ferrocement, experimental 

results of nineteen (19) specimens out of total fifty five 

(55) has been used, as shown in Table 1. Eight (08) 

parameters of the data of nineteen (19) specimens has 

been used as neurons of external input for training using 

MATLAB ANN system, as shown in Figure 1. 

Table 1. Input Data used for Training in Artificial Neural Network (ANN) [after Ref: 23-26] 

Specimen 

Label 

Cylinder 

Dimension 

Core 

Dimension 

No. of Mesh-

layers 

Yield 

strength 

Wire 

Diameter 

Wire 

Spacing 

Unconfined 

Compressive 
Strength 

Experimental 
Confined 

Compressive 

Strength 
Method of attachment 

of  Ferro-mesh layer 

R
ef

er
en

ce
s 

H D Hc N fy dw S fcu fct 

mm mm mm - MPa mm mm MPa MPa 

Aa-ii-1 152 305 114 1 345 0.96 6 27.62 30.8 

Integrally cast mesh 

layers 

[23] 

Aa-ii-3 152 305 114 3 345 0.96 6 27.62 37.52 

Aa-iii-2 152 305 114 2 345 0.96 6 26.37 33 

Ab-i-1 152 305 114 1 345 0.96 6 32.14 35.37 

Ab-i-3 152 305 114 3 345 0.96 6 32.14 41.42 

Ca-iii-1 152 305 114 1 345 0.96 6 26.37 29.31 

Wrapped mesh layer on 

precast core 

Ca-iii-3 152 305 114 3 345 0.96 6 26.37 34.97 

Cb-i-2 152 305 114 2 345 0.96 6 32.14 40.29 

Cb-ii-1 152 305 114 1 345 0.96 6 30.73 33.56 

Cb-ii-3 152 305 114 3 345 0.96 6 30.73 38.93 

PB-1 150 300 120 1 585 1.09 12.5 37.895 42.37 
Integrally cast mesh 

layers 

[24] 
PB-3 150 300 120 3 585 1.09 12.5 37.895 52.364 

SKSP-1 150 300 120 1 340 0.7 6 26.65 46.5 [25] 

A2-2 150 300 126 2 530 0.94 11.6 41.13 50.76 
Wrapped mesh layers 

on precast core using 
special fasteners 

[26] 

A2-4 150 300 114 4 530 0.94 11.6 41.13 48.82 

A2-8 150 300 105 8 530 0.94 11.6 41.13 55.99 

B2-2 150 300 126 2 530 0.94 11.6 41.13 53.3 wrapped mesh layers 

on precast 
core bonded on the 

edges 
B1-8 150 300 105 8 530 0.94 11.6 41.13 60.3 

C1-8 150 300 105 8 530 0.94 11.6 41.13 71.78 
Wrapped mesh layers 

on precast core by 

bonding first two layers 

 

Algorithms 

Training:   Levenberg-Marquardt (trainlm) 
Performance:  Mean Squared Error (mse) 

Data Division:  Random (dividerand) 

Figure 1. Architecture of the ANN Model Used 

Hidden layer has been assigned sixteen (16) neurons, 

which initially computed linear combination of the output 

of the neurons of input layer and bias whose coefficients 

are called “weights” (i.e. coefficients of the linear 

combination plus bias). After linear combination, neurons 

in the hidden layer computed by a nonlinear function 

called “sigmoid function” [3] of the input. Neurons gather 

information from other neuron through multiplication of 

the output of connected neuron depending on the synaptic 

strength of the connection between them [30]. 

The output of neurons is connected to the network 

input through a transformation function called activation 

function [30]. The architecture of ANN used in current 

paper is comprised of multilayer feed forward and back 

propagation algorithm. Two-layer tansig/purelin network 

has been used to construct the model as shown in Figure 1 

and tan-sigmoid (tansig) function has been used as 

transfer function. After initializing the network weights 

and biases, network was trained for pattern recognition 

using Levenberg-Marquardt (trainlm) training function. 

Network inputs and target outputs have been provided for 

training process. During training, network weights and 

biases has been iteratively adjusted in order to minimize 

the network performance function net.performFcn. The 

default performance function for feed forward networks is 

mean square error (mse) which is the average squared 

error between network outputs and the target outputs [31]. 

The parametric values used in the ANN model are 

summarized in Table 2. 

After training the model with nineteen (19) 

experimental results, overall data of fifty five (55) 

specimens has been used as an experimental input for 
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simulation which produced similar results to the 

experimental results. Details of the inputs provided to the 

ANN, presented by four researchers [23,24,25,26], are 

given in Table 3. 

Table 2. Information of the Parameters used to develop ANN Predictive Model 

Parameters Values Used 

Number of input layer neurons 8 

Number of hidden layer neurons 16 

Number of output layer neuron 1 

Max. Number of epochs 300 

Mu 1x 10-8 

Mu decrease factor 0.1 

Mu increase factor 10 

Performance goal 1x10-5 

Gradient 7x10-11 

Table 3. Comparison of the results of ANN predictive model and theoretical models [23-26] with experimental results 
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Aa-
ii-1 

152 305 114 1 345 0.96 6 27.62 30.8 

Integrally 

cast mesh 

layers 

 

 

 

 

 

[23] 

 

 

 

 

 

 

 

30.25 30.88 29 29.63 

Aa-

ii-2 
152 305 114 2 345 0.96 6 27.62 

34.2

4 
33.54 34.15 30.5 31.65 

Aa-
ii-3 

152 305 114 3 345 0.96 6 27.62 
37.5

2 
34.98 37.41 32 33.66 

Aa-

iii-1 
152 305 114 1 345 0.96 6 26.37 29.6 28.71 29.63 27.8 28.38 

Aa-
iii-2 

152 305 114 2 345 0.96 6 26.37 33 32.43 32.9 29.3 30.4 

Aa-

iii-3 
152 305 114 3 345 0.96 6 26.37 

36.2

2 
34.42 36.16 30.9 32.41 

Ab-i-
1 

152 305 114 1 345 0.96 6 32.14 
35.3

7 
33.66 35.4 33.4 34.15 

Ab-i-

2 
152 305 114 2 345 0.96 6 32.14 

38.3

7 
34.86 38.67 34.8 36.17 

Ab-i-
3 

152 305 114 3 345 0.96 6 32.14 
41.4

2 
34.43 41.93 36.2 38.18 

Ab-

ii-1 
152 305 114 1 345 0.96 6 30.73 

33.8

4 
33.01 33.99 32.1 32.74 

Ab-
ii-2 

152 305 114 2 345 0.96 6 30.73 
36.9

5 
34.88 37.26 33.5 34.76 

Ab-

ii-3 
152 305 114 3 345 0.96 6 30.73 40 34.96 40.52 34.9 36.77 

Ba-ii-
1 

152 305 114 1 345 0.96 6 27.62 
30.4

5 
 
 
 

Mesh 

layer 

in precast 

shell 
 
 
 

30.25 30.38 28.2 29.63 

Ba-ii-

2 
152 305 114 2 345 0.96 6 27.62 33.1 33.54 33.16 28.81 31.65 

Ba-ii-
3 

152 305 114 3 345 0.96 6 27.62 
35.8

2 
34.98 35.93 29.43 33.66 

Ba-

iii-1 
152 305 114 1 345 0.96 6 26.37 

29.0

3 
28.71 29.14 26.96 28.38 

Ba-
iii-2 

152 305 114 2 345 0.96 6 26.37 
31.8

6 
32.43 31.91 27.59 30.4 
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Ba-

iii-3 
152 305 114 3 345 0.96 6 26.37 

34.4

1 
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layer 

in precast 

shell 
 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

[23] 

 

34.42 34.68 28.23 32.41 

Bb-i-

1 
152 305 114 1 345 0.96 6 32.14 34.8 33.66 34.91 32.68 34.15 

Bb-i-

2 
152 305 114 2 345 0.96 6 32.14 

37.3

5 
34.86 37.68 33.24 36.17 

Bb-i-

3 
152 305 114 3 345 0.96 6 32.14 

39.7

3 
34.43 40.45 33.82 38.18 

Bb-

ii-1 
152 305 114 1 345 0.96 6 30.73 

33.3

9 
33.01 33.49 31.28 32.74 

Bb-

ii-2 
 

152 305 114 2 345 0.96 6 30.73 
35.9

3 
34.88 36.27 31.86 34.76 

Bb-

ii-3 
152 305 114 3 345 0.96 6 30.73 

38.4

8 
34.96 39.04 32.45 36.77 

Ca-ii-
1 

152 305 114 1 345 0.96 6 27.62 
30.4

5 

Wrapped 

mesh 

layer on 

precast 

core 

30.25 30.35 28.2 29.63 

Ca-ii-

2 
152 305 114 2 345 0.96 6 27.62 

33.2

7 
33.54 33.08 28.81 31.65 

Ca-ii-

3 
152 305 114 3 345 0.96 6 27.62 

36.3

9 
34.98 35.81 29.43 33.66 

Ca-

iii-1 
152 305 114 1 345 0.96 6 26.37 

29.3

1 
28.71 29.1 26.96 28.38 

Ca-

iii-2 
152 305 114 2 345 0.96 6 26.37 

32.1

4 
32.43 31.83 27.59 30.4 

Ca-
iii-3 

152 305 114 3 345 0.96 6 26.37 
34.9

7 
34.42 34.56 28.23 32.41 

Cb-i-
1 

152 305 114 1 345 0.96 6 32.14 
37.6

3 
33.66 34.87 32.68 34.15 

Cb-i-

2 
152 305 114 2 345 0.96 6 32.14 

40.2

9 
34.86 37.6 33.24 36.17 

Cb-i-

3 
152 305 114 3 345 0.96 6 32.14 

28.7

5 
34.43 40.33 33.82 38.18 

Cb-

ii-1 
152 305 114 1 345 0.96 6 30.73 

33.5

6 
33.01 33.46 31.28 32.74 

Cb-

ii-2 
152 305 114 2 345 0.96 6 30.73 

36.2

2 
34.88 36.19 31.86 34.76 

Cb-
ii-3 

152 305 114 3 345 0.96 6 30.73 
38.9

3 
34.96 38.92 32.45 36.77 

PB-1 150 300 120 1 585 1.09 12.5 37.895 
42.3

7 

Integrally 

cast mesh 

layers 

 

[24] 

41.99 42.1 42.2 43.52 

PB-2 150 300 120 2 585 1.09 12.5 37.895 
49.6

1 
45.24 46.31 46.51 49.15 

PB-3 150 300 120 3 585 1.09 12.5 37.895 
52.3

64 
48.44 50.52 50.47 54.77 

PB-4 150 300 120 4 585 1.09 12.5 37.895 
54.7

8 
51.64 54.73 55.12 60.4 

SKS
P-1 

150 300 120 1 340 0.7 6 26.65 46.5 

[25] 

46.16 28.53 27.51 27.63 

SKS

P-2 
150 300 120 2 340 0.7 6 26.65 50 56.43 30.41 28.42 28.62 

SKS

P-3 
150 300 120 3 340 0.7 6 26.65 53.5 66.34 32.3 29.35 29.6 

A1-2 150 300 126 2 530 0.94 11.6 41.13 
51.3

8 

Wrapped 

mesh on 

precast 

core by 

special 

 fasteners 

 

 
 

 

 
 

 

[26] 
 

 

 
 

 

 
 

 

 

51.76 46.31 43.08 44.4 

A1-4 150 300 114 4 530 0.94 11.6 41.13 
52.7

1 
59.64 50.75 45.13 47.38 

A1-8 150 300 105 8 530 0.94 11.6 41.13 
50.7

4 
62.50 59.36 49.36 53.21 

A2-2 150 300 126 2 530 0.94 11.6 41.13 
50.7

6 
51.76 46.31 43.08 44.4 

A2-4 150 300 114 4 530 0.94 11.6 41.13 
48.8

2 
59.64 50.75 45.13 47.38 

A2-8 150 300 105 8 530 0.94 11.6 41.13 
55.9

9 
62.50 59.36 49.36 53.21 

B2-2 150 300 126 2 530 0.94 11.6 41.13 53.3 wrapped 
mesh 

on 
precast 

core  
bonded 

on edges 

51.76 46.31 43.08 44.4 

B1-8 150 300 105 8 530 0.94 11.6 41.13 60.3 62.50 59.36 49.36 53.21 

B1-2 150 300 126 2 530 0.94 11.6 41.13 48.8 51.76 46.31 43.08 44.4 
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B1-4 150 300 114 4 530 0.94 11.6 41.13 
49.5

7 

 

 

[26] 

59.64 50.75 45.13 47.38 

C1-4 150 300 114 4 530 0.94 11.6 41.13 
59.8

7 

Wrapped 

mesh 

layers on 

precast 

core by 

bonding 

first two 

layers 

59.64 50.75 45.13 47.38 

C1-8 150 300 105 8 530 0.94 11.6 41.13 
71.7

8 
  62.50 59.36 49.36 53.21 

4. Results and Discussion 

Results of compressive strength of plain concrete 

confined with Ferrocement predicted by ANN model and 

estimated by existing mathematical models [23,24,25] has 

been summarised in Table 3. In order to compare the 

results, Regression value “R”, Root mean square error 

(RMS) and absolute fraction of variance (V) have been 

calculated from ANN predictive model and existing 

mathematical models [23,24,25]. The command used in 

MATLAB for linear regression has been described 

underneath: 

 [m, b, r] = postreg (ti, oi) (10) 

Where, 

m is the slope of the linear regression, b is the Y 

intercept of the linear regression, r is the regression R-

value (R=1 indicates perfect correlation), ti is the  

Experimental Results (used as target) and oi= Theoretical 

Results (used as output) 

Root mean square error (RMS) and absolute fraction of 

variance (V) has been calculated manually using 

following formulation: 

 

2| |i it o
RMS

n





 (11) 

 

2

2

| |
1

i i

i

t o
V

o


 




 (12) 

Where, n = number of observations 

Results of compressive strength of plain concrete 

confined with Ferrocement predicted by ANN model and 

estimated by existing mathematical models [23,24,25] has 

been plotted from Figure 2 to Figure 5 for comparison in 

terms of closeness to the experimental results. Results 

showed that ANN model is more efficient than existing 

mathematical models by comparing the statistical 

regression value (R), root mean square error (RMS) and 

absolute fraction of variance (V). 

As mentioned by authors [22], mathematical model 

proposed by Waliuddin and Rafeeqi [23] estimates 

compressive strength of plain concrete confined with 

Ferrocement very efficiently and more accurately to the 

experimental results, than other existing mathematical 

models, based on all three methods of attachment of 

Ferro-mesh i.e. integrally cast Ferro-mesh, precast Ferro-

mesh and wrapped Ferro-mesh. However in current 

research, in spite of using parameters of the data of 19 

specimens for training purpose, ANN predictive model 

exhibited more promising results than all mathematical 

models [23,24,25]. 

 

Figure 2. Experimental vs. Predictive ANN Model 

 

Figure 3. Experimental vs. Theoretical model by Waliuddin and Rafeeqi 

[15] 

5. Conclusions 

The successful development of the predictive model for 

the compressive strength of concrete confined with 

Ferrocement leads to a conclusion that Artificial Neural 

Network (ANN) is a proficient tool due to its self-learning 

and generalizing capability from experimental results, as 

only providing raw information to the training model (i.e. 
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cylinder and core dimension, no. of wire-mesh layers, 

wire diameter and spacing, yield strength of the wire of 

wire-mesh and unconfined compressive strength), 

compressive strength of plain concrete confined with 

Ferrocement has been closed accurately predicted as 

compared to results of mathematical models [23,24,25]. 

 

Figure 4. Experimental vs. Theoretical model by Balaguru P. [15] 

 

Figure 5. Experimental vs. Theoretical model by Kaushik S.K. [15] 

Regression value “R”, root mean square error (RMS) 

and absolute fraction of variance (V) calculated to 

compare all 55 experimental results [23,24,25,26] with 

ANN predictive model also shows better performance of 

ANN predictive model. 

Consequently, compressive strength of plain concretes 

confined with Ferrocement has been predicted in a fairly 

small period of time with minimal error using multilayer 

feed forward artificial neural network (ANN) model 

without performing hectic experimental work. This 

indicates that multilayer feed forward artificial neural 

network (ANN) is a feasible method to predict 

compressive strength of plain concretes confined with 

Ferrocement. 

This study also shows that ANN model as predictive 

model and model proposed by Waliuddin and Rafeeqi [23] 

as mathematical model possess capability to predict more 

accurate compressive strength results for plain concrete 

confined by different methods such as integrally cast 

Ferro-mesh layers, or precast Ferro-mesh layers or 

wrapped Ferro-mesh layers. 
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