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Abstract  The computerized building design has been developed to optimize building design. Machine learning 
techniques are explored to help predict building design performance. However, in the current building design tools, 
the optimization techniques have not been integrated closely with the computerized building design tool. Only a few 
tools add some optimization methods such as genetic algorithms. The aim of the paper is to use machine learning 
techniques to predict the daylighting metrics such as illuminance and thermal metrics for different combinations of 
window glazing transmittances, weather conditions and blind reflectance values. In this paper, three machine 
learning algorithms were evaluated, PCA (principal component analysis), ANN (artificial neural network), SVM 
(support vector machine). The PCA and forward feature selection algorithms were used to extract features or reduce 
the dimension of the features. Four comparisons were conducted: NN with PCA, ANN without PCA, SVM with 
PCA, and SVM without PCA. The results show that the NN with PCA has the best accuracy for the daylighting UDI 
classification problem. The ANN has an acceptable accuracy for the energy prediction problem. 
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1. Introduction 
Daylight harvesting has the potential to offer significant 

energy and economic benefits regarding space heating, 
cooling, and lighting energy that represent more than half 
of commercial site energy consumption. The buildings 
sector accounted for almost 40% of primary energy 
consumption in 2008 and accounted for approximately 8% 
of the global primary energy consumption.  

The building sector consumed more primary energy 
than the transportation and industrial sectors. Commercial 
buildings accounted for one-fifth of U.S. energy 
consumption. The three main types of commercial 
buildings are office space, retail space, and educational 
facilities [1]. Space heating, lighting, and space cooling 
represent more than half of commercial site energy 
consumption. Daylighting has the potential to offer 
significant energy and economic benefits in these three 
aspects through daylight harvesting. Daylight harvesting 
can result in significant electric lighting reduction in 
commercial buildings by the application of electric 
lighting controls. Turning off electric lights when 
sufficient daylight is available can save lighting energy 
costs. Because daylight introduces less heat into a building 

than the equivalent amount of electric lighting, cooling 
costs can also be reduced with appropriate daylighting 
design [2]. Because these reductions are maximized 
during peak electricity demand periods, daylight 
harvesting can greatly contribute to peak electricity 
demand reduction [3,4]. 

The benefits of daylighting include improving visual 
performance as well as reducing energy consumption [5]. 
Research showed that student performance and health 
were related to daylighting conditions in the classroom [6]. 
The benefits from daylighting greatly depend on daylight 
availability, which varies significantly by latitude, sun 
path, sky conditions, and climate. The selection of 
appropriate daylighting systems is an important approach 
of making best use of daylighting [7]. 

The complexity of lighting reflection between surfaces 
makes it difficult to conduct accurate manual calculations. 
Computer simulation tools were developed to speed the 
calculation process [8]. Computer simulation methods 
offer flexibility that other methods sometimes cannot 
provide and provide a convenient way of parametrically 
evaluating designs in comparison to other design 
alternatives. The tools are based on different algorithms, 
which are generally based on ray tracing or radiosity 
methods. According to the survey conducted by Reinhart 
and Fitz [9], 50% of programs in the daylighting 
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simulation field use the Radiance simulation engine. 
Different analytical models were developed to predict 
building performance [10]. A rule-based expert system 
was developed to integrate daylighting and thermal 
simulations [11,12]. 

The standard simulation software Radiance was 
validated by Mardaljevic [13,14]. Reinhart and Andersen 
[15] also validated Radiance for simulating translucent 
materials and the results shows that the mean bias errors 
(MBEs) were below 9% and rooted mean square errors 
(RMSEs) were below 19% for all desktop and ceiling 
sensors considered. These simulation accuracies were 
even better than those earlier reported for standard glass, 
plastic, and metal material types the errors of which were 
approximately 17% (MBE) and 30% (RMSE). One 
possible reason for generating these errors was that sharp 
indoor illuminance gradients (e.g. shadows generated by 
direct sunlight) were mitigated through translucent panels.  

Researchers also validated the Radiance-based software. 
For example, Maamari and Andersen [16] assessed the 
accuracy of different lighting simulation methods to 
predict the performance of CFS. DElight had the 
advantage of the complete daylighting simulation without 
using other supplementary tools. The Radiance algorithm 
had the advantage of avoiding the need for BTDF data, 
but it was limited to a specific type of CFS. Reinhart and 
Herkel [17] compared six Radiance-based methods: 
ubiquitous daylight factor, ADELINE 2.0; the classified 
weather data and ESP-r version 9, new method 
daylighting coefficient (DC) total, and new method DC 
without direct sunlight. The classified weather data served 
as a reference case. They determind that the DC total 
approach showed a very low RMSE and MBE (for both 
global and diffuse daylight). Loutzenhiser and Maxwell 
[18] examined measured and simulated light levels in an 
actual building and determined the average differences in 
predictions of daylight illuminance at reference points. 
Andersen and Kleindienst [19] developed a visualization 
tool that not only could visualize the illuminance by using 
“spatio-temporal irradiation maps” developed by 
Mardaljevic [20] but also used Perez’s ASRC-CIE sky 
model [21]. Hu and Olbina developed a simplified 
analytical model to predict energy and daylight values. 
The model can significantly reduce the runtime while 
improving the accuracy [22]. Li reviewed the illuminance 
calculation methods that included daylighting 
measurement, sky illuminance and luminance, and 
daylighting coefficient (DC) and daylighting factor (DF) 
methods [23]. 

Radiance has the capability of effectively simulating 
the daylighting condition when three types of skylight 
[17,24]. The software DAYSIM developed by Reinhart 
and Walkenhorst [25] is based on the standard lighting 
simulation software Radiance. This software used the 
concept of DC to simulate the daylighting. Meanwhile, the 
energy consumption of electric lighting can also be 
calculated based on the daylighting illuminance. This 
software was validated using a test room [25].  

Different machine learning methods have been used for 
lighting and energy prediction. For example, neural 
network also were used to predict lighting performance 
[26]. Hu and Olbina developed a model to predict the 
optimum slat angles of split blinds to achieve the designed 
indoor illuminance. The model was constructed based on a 

series of multi-layer feed-forward artificial neural 
networks (ANNs) [27]. To further improve the control 
strategy, a simplified control model was developed to 
improve the system performance [28]. 

This research is to use machine learning techniques to 
predict the daylighting metric and thermal metric for an 
arbitrary window glazing transmittance, weather condition 
and blind reflectance values. That is to say, given an 
exterior climate condition, window configuration, I need 
to predict the hourly daylighting levels at several sensor 
points (classification problem) and hourly energy 
consumption (regression problem). The daylighting metric 
uses hourly Useful Daylight Illuminance (UDI). The UDI 
is represented by the percentages of the occupied times of 
the year when the UDI is achieved (100-2000 lx), is not 
sufficient (less than 100 lx), or is exceeded (more than 
2000 lx). The hourly energy consumption of a building will 
be used. E nergyPlus is developed by Department of 
Energy and was validated and recognized as one of the 
most accurate whole building energy simulation engines. 
This research uses EnergyPlus simulation engine to 
simulation annual energy. The generated data were used to 
train the algorithm to evaluate the performance. 

2. Algorithm Development 

 

Figure 1. Overall structure 

The overall structure of the algorithm is shown in 
Figure 1. The following part of this section would 
elaborate the workflow in more details. The data 
generation programs generate all data needed in the 
machine learning algorithms. These data include the 
output data and input data such as weather data, and 
building design data. These were generated by Python and 
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Matlab programs. The daylighting and thermal data are 
output data that will be used for supervised learning.  

The algorithm used includes two tasks: (1) 
cclassification problem: This requires classifying the 
daylighting level values in interior room in to different 
UDI values; (2) regression problem: this requires 
predicting the energy consumption based on different 
weather condition and glazing and blind materials. 

The following section would introduce each workflow 
of the daylighting UDI classification problem and energy 
prediction problem. 

The algorithm mainly includes three parts: (a) 
algorithms used to generate input files for simulations; (b) 
algorithms used to process data for machine learning 
algorithms.  

In Figure 2, a Python program was developed to 
generate the input files. There were a total of 81 input files. 
Each file has a different glazing transmittance and blind 
reflectance. Then Matlab was used to extract the values of 
all potential features from the simulated files. The data 
included the potential feature data as well as the output 
(i.e., class) data. The implementation of the algorithms is 
introduced in this section. 

 

Figure 2. Process of generating and parsing data (input and output) 

2.1. Input File Generation  
The input files were generated by generating some of 

the key parameters such as window transmittance and 
glazing coefficients used by the simulation files. The 
program was coded by using Python and run in command 
line. The command line options are shown as follows (see 
Figure 3): 

 

Figure 3. Command line options of generating simulation input files 

As shown in Figure 3, the program can achieve the 
following functions: 
•  Generate the input file format specific for window 

specification (location, glazing parameters, 

dimensions and so on). The 3D model of the building 
is shown in Figure 4. The model was created in 
SketchUp. The model can be integrated with 
EnergyPlus and OpenStudio tool for energy 
simulations.  

•  Generate the input file format specific for blind 
setting specification (location, blind reflectance, slat 
angle, slat width, and so on) 

•  Other data related to construction materials, such as 
wall thermal properties. Note that most of the 
thermal and geometry parameters were loaded from a 
separate text files because these parameters are static 
and do not require parametric setting. 

•  The location of sensors such as occupancy sensors 
affects the building system performance [29]. From 
previous study One third of the space penetration is 
selected in this case study.  

 

Figure 4. Illustration of building model geometry 

2.2. Data Parsing 
An algorithm was developed to process the data from 

the simulation results. The simulations were conducted by 
EnergyPlus in Linux machine. The simulation time was 
about 10 hours. The algorithms were coded in Matlab. The 
total data set include 8760*81 hourly data values include 
energy consumption as well as daylighting UDI range 
values. 

To generate the data, the following procedure was used. 
Read the data from the generated the CSV files (8760*81 
tuple of data), and then process the data to extract the 
occupied hour data which is from 8 am to 5 pm. The data 
were used as output because we do not need to consider 
the night time. 

Permute the data to generate the data for input and 
output variables for the machine learning algorithms. 
From all the occupied data, I randomize the data and 
select 3285 hourly data for training and another set of 
3285 hourly data for testing. 

Use Matlab to extract the input variables from weather 
files and generate the input data sequence according to the 
sequence of the permutated output data. 

The SVM, PCA and ANN were chosen. SVM is one of 
the best algorithms for classification, which might be 
suitable for this daylighting UDI classification. Some 
literature used neural networks to analyze the daylighting 
levels. Though their research is not classification problem. 
But a threshold method was used to convert it to 
classification. Some literature shows that using neural 
networks for predicting building energy usage. The 
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problem in this paper considered more complicated issues 
by including glazing transmittance and blind reflectance 
[27]. A number of features might be considered. To 
reduce the dimensions, the principal component analysis 
was used to analyze how the reduction of feature 
dimension affects the accuracy of the algorithms. 

PCA is used to generate the orthogonal input variables. 
The input variables will also considered by testing all 
possible features to select the best ones. 
•  In the SVM and NN algorithms, different sets of 

parameters were tested. For example, for SVM, 
Gaussian Radial Basis Function (RBF) and linear 
kernels were tested and their performances were 
compared. 

•  Three algorithms were considered: (a) principal 
component analysis; (b) neural network; (c) support 
vector machine. PCA was used to generate the 
orthogonal input variables that were used by NNs 
and SVM in the next phase. In addition, for the 
neural network models, different parameters were 
considered, for example, the hidden layers were 
evaluated to select the optimal hidden layer number. 
The appendix shows the basic structure of the code 
for neural network without/with PCA (see Figure 5). 

 

Figure 5. Process of solving the daylighting UDI classification problem 

The overall process of solving the regression problem 
was shown in Figure 6. The appendix shows the basic 
structure of the code for SVM without/with PCA. 
•  It is similar with the classification problem. Python 

program will be used to generate the input files. 
There are a total of 81 input files. Each file has a 
different glazing transmittance and blind reflectance. 

•  Only neural network was considered. Different 
parameters were evaluated to select the optimal 
parameters for the neural network model. 

The output of the classification problem (i.e., 
classification of daylighting levels) is that UDI value at 
the sensor point and how many types were explored, we 
can use different range for this problem. For example, the 
ranges: 0-100 lx, 100-500 lx, 500-200 lx, and >2000 lx, 
are standard ranges which are commonly used. But I 
would explore other ranges to provide an even precise 
division of ranges. 

The output variables of the regression problem are: 
Hourly Sensible Heating Rate, and Hourly Sensible 
Cooling Rate. 

 

Figure 6. Process of solving the energy consumption prediction problem 

The potential features come from three sources: 
1) Weather related features: weather files provided by 

the U.S. Department of Energy and LBN, The 
weather data for US can be found in the following 
link: 
http://apps1.eere.energy.gov/buildings/energyplus/cf
m/weather_data3.cfm/region=4_north_and_central_a
merica_wmo_region_4/country=1_usa/cname=USA 

2) Building related features: The building design data 
will be developed based on ASHRAE standard and 
other building design standards. The specific 
building design dataset will be from (1) building 
design book such as ASHRAE standards (link: 
https://www.ashrae.org/resources--
publications/bookstore/standard-90-1#2007). 

3) Window related features: input file generated by 
Python and Matlab. The following section would 
introduce the Python program and how to generate 
the building model. In addition, Matlab is used to 
extract the training and testing data from all the 
potential features and data. 

Not all the above features were used for the 
classification and regression problems. Therefore, two 
methods were used to extract the features for the problem. 

 

Figure 7. Cumulative sum of variances of features in PCA 

First of all, pprincipal component analysis was used to 
extract the most important variables that would account 
for 90% variance. All the possible data were inputted and 
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then PCA was used to analyze the input data. Figure 7 
shows the cumulative of the variables. Therefore, the eight 
variables for neural network training was shown. 

Select a minimum set of features that are very 
important to the problem. Then use forward selection 
approach: add one feature into the feature set at a time 
through comparing the output errors with this feature and 
output errors without this feature. Then add that feature 
that could give the least errors and high accuracy. Repeat 
this process until the error does not change much. The 
neural network algorithms were used to calculate the 
errors. The following input variables show a higher 
accuracy for neural network: 
•  Exterior Horizontal Illuminance From Sky  
•  Exterior Horizontal Beam Illuminance  
•  Glazing Transmittance 
•  Blind Reflectance 
•  Solar Azimuth Angle  
•  Solar Altitude Angle  
•  Solar Hour Angle 

3. Experiment 
The data generation algorithms was coded by Python,. 

The machine learning algorithms were coded by using 
Matlab. For the daylighting UDI classification problems, 
The following indicator was used to measure the accuracy 
of the model. Number of testing samples with correct 
prediction / total number of testing samples 

For the energy usage prediction problem (regression 
problem), I measure the RMSE (root-mean-square error) 
by using the following equation 
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3.1. Daylighting UDI Classification  
There were 3285 data were used for training and an 

independent 3285 data samples were used for testing. The 
following four different algorithms were used to test the 
results. 

Comparison of neural networks using PCA and 
without using PCA 

The Table 1 shows the accuracy of the two models: the 
model using PCA shows that the input variables were 
extracted by using PCA; the neural network without PCA 
is used by directly using the features shown in Section 4: 
Feature selection and extraction.  

Table 1. Accuracy of neural networks using PCA and without using 
PCA 

# of hidden layers Accuracy 
Using PCA Without PCA 

5 92.51% 83.65% 
10 94.61% 83.84% 
15 96.35% 90.29% 

Comparison of SVM using PCA and without PCA 
The two accuracy rates are shown in Table 2. The SVM 

without PCA shows a higher accuracy than the SVM 
without PCA. This is contradictory with the methods 

using neural network. In addition, RBF shows a better 
performance than linear kernel function. 

Table 2. Accuracy of support vector methane using PCA and 
without using PCA 

Kernel function  Using PCA Without PCA 
RBF 70.14% 73.88% 

Linear 62.15% 70.08% 

3.2. Energy Usage Prediction  
The regression problems are studied and analyzed by 

analyzing different input variables as well as the 
parameters (see Figure 8). The calculated RMSE = 127 
(Watts). Though the error is large, from practical means, 
the error is still acceptable because 127 Watt error per 
hour is acceptable. 

 

Figure 8. Residual error of the energy prediction 

4. Discussions 
The prediction accuracy of daylighting UDI is relative 

high compared to regression problem. Neural network 
using principal component analysis generated the highest 
accuracy (about 96%) compared to other algorithms. The 
high accuracy of neural networks is consistent with the 
current research. The neural network model shows a 
higher accuracy than SVM. The SVM models have only 
about 70% though my initial expectation was that SVM 
should be at least as good as neural network. There are 
several possible reasons: 
•  The feature selection used the neural network 

algorithm to select the features. Thus, this bias might 
cause SVM has a lower accuracy. 

•  The feature might not be enough for SVM. Therefore, 
if I may add more features without using feature 
selection, the accuracy of SVM might become higher. 

•  There might be some other kernel functions that will 
give a better result. 

The SVM using PCA has the lowest accuracy. The 
possible reason is that the number of features is limited 
and SVM cannot accuracy create the optimal hyperplane. 
The results show that about 3 out of 365 days show a 
wrong prediction by using the neural network algorithm. 
The features that are important for the predictions include: 
Exterior Horizontal Illuminance From Sky; Exterior 
Horizontal Beam Illuminance; Glazing Transmittance; 
Blind Reflectance; Solar Azimuth Angle; Solar Altitude 
Angle, and Solar Hour Angle. Sky and sun illuminance 



6 American Journal of Civil Engineering and Architecture  

 

levels are important because sky light is also an main 
source of daylighting. Unlike the energy consumption 
prediction, glazing and blind parameters are also 
necessary feature because change of glazing transmittance 
or blind reflectance changes the daylighting level 
significantly.  

For energy usage prediction, the calculated RMSE is 
equal to 127W. The error is not high compared to the 
daylighting classification. From a practical pespective, the 
number is actually acceptable because 127W is significant 
deviation for energy consumption. The method still can be 
used for energy prediction. The analysis shows that the 
energy consumption is complicated and depends on more 
features than normally expected. In addition, the 
prediction of energy consumption depends on the exterior 
climate condition. The frequent change of external 
temperature significantly affects the energy consumption. 
Some features that are important because they are related 
to source of energy to a large extent. For example, 
temperature (Zone Outdoor Wet Bulb) is an feature for 
energy consumption (HVAC system). The solar is also an 
main feature for energy consumption. Those features that 
are significant include: Exterior Horizontal Beam 
Illuminance [lux](Hourly); Exterior Beam Normal 
Illuminance [lux](Hourly); Luminous Efficacy of Sky 
Diffuse Solar Radiation [lum/W](Hourly); Zone Outdoor 
Wet Bulb [C](Hourly); Diffuse Solar [W/m2](Hourly); 
Direct Solar [W/m2](Hourly); Solar Azimuth Angle 
[deg](Hourly); Solar Altitude Angle [deg](Hourly). Some 
other parameters such as sky efficacy are not important 
because sky light is not an main factor for building energy 
consumption based on normal analysis. 

5. Conclusions 
The literature review shows that this topic has not been 

studied thoroughly because of the dynamics of sky 
conditions. In addition, current literature show that the 
prediction is mainly based on very few building design 
parameters such as window glazing type. Three machine 
learning algorithms have been applied by analyzing 
daylighting UDI classification and energy usage 
prediction problems. Two feature extraction methods were 
used and compared: forward selection and PCA based 
feature dimension reduction. The results show that the 
neural network using principal component analysis 
generated the highest accuracy (about 96%) compared to 
other algorithms. The high accuracy of neural networks is 
consistent with the current research. For the energy usage 
prediction problem, the calculated RMSE is about 127W 
and the error is not high compared to the actual energy 
usage. This research has practical meanings. The literature 
review shows that currently only a very few tools integrate 
the machine learning techniques. The designers can use 
the methods to help them design window systems. The 
machine learning algorithms could not only reduce their 
design and testing times but also could provide sensibility 
analysis by allowing them to view the trend of different 
daylighting design strategies. 

Appendix 

Support vector machine with/without PCA 
%% important parameters: 
inIndex = [1,2,13,14,17,18]; % input variable index 
outMode_train = 2;  
outMode_scale01 = 2; 
isPCA = 1 ; % using PCA == 1; not use PCA ==0; 
%% load 
alldata = importdata('alldata.dat'); 
nd = 3285; 
pt = [1:nd]; 
%% input for training and testing 
% method 1: without PCA  
if(isPCA ==0) 
%%% training: input 
in = alldata(pt,inIndex)'; 
%%% test::input 
ActIn = alldata(nd+1:nd*2,inIndex)'; %% transposed 
End 
%%% method 2: using PCA  
if(isPCA==1) 
%%% training: input 
[COEFF,SCORE_in,latent_in]= 

princomp(zscore(alldata)); 
in = SCORE_in(pt,:)'; 
in = in(1:10,:); 
%%% test::input 
[COEFF,SCORE_test,latent_test]= 

princomp(zscore(alldata)); 
ActIn = SCORE_test(nd+1:nd*2,:)'; %% transposed 
ActIn = ActIn(1:10,:); 
end 
%% output for training and testing 
%%% training: output 
out=zeros(1,nd); 
m = alldata(pt,10)'; 
out = genDaylightOut(m,nd,outMode_train);  
%%% testing: output: 
m2 = alldata(nd+1:nd*2,10)'; 
ActOut_noscale = m2;  
ActOut_scale01= 

genDaylightOut(m2,nd,outMode_scale01);  
 
%% SVM training 
PreOut_scale01=multisvm_2(in',out',ActIn')'; 
% accuracy: case 2: classification 
t1 = (PreOut_scale01 - ActOut_scale01 )==0; 
mseClass01 = sum( t1) / nd; %% calcualte the accuracy 
mseClass02 = sqrt( sum((PreOut_scale01 - 

ActOut_scale01).^2)/nd); 
 
%Models a given training set with a corresponding 

group vector and  
%classifies a given test set 
function [result]= 

multisvm_2(TrainingSet,GroupTrain,TestSet) 
u=unique(GroupTrain); 
numClasses=length(u); 
result = zeros(length(TestSet(:,1)),1); 
  
%build models 
for k=1:numClasses 
%Vectorized statement that binarizes Group 
%where 1 is the current class and 0 is all other classes 
G1vAll=(GroupTrain==u(k)); 
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models(k)= 
svmtrain(TrainingSet,G1vAll,'kernel_function','rbf'); 

end 
  
%classify test cases 
for j=1:size(TestSet,1) 
for k=1:numClasses 
if(svmclassify(models(k),TestSet(j,:)))  
break; 
end 
end 
result(j) = k; 
end 
 
Nneural networks with/without PCA 
%% important parameters: 
inIndex = [1,2,13,14,17,18];  
outMode_train = 1;  
outMode_scale01 = 2; 
isPCA = 1 ; % using PCA == 1; not use PCA ==0; 
hiddenSizes = 10; 
%% load 
alldata = importdata('alldata.dat'); 
nd = 3285; 
pt = [1:nd]; 
  
%% input for training and testing 
%%%%%%%%%%%%% method 1: without PCA  
if(isPCA ==0) 
%%% training: input 
in = alldata(pt,inIndex)'; 
%%% test::input 
ActIn = alldata(nd+1:nd*2,inIndex)'; %% transposed 
end 
%%%%%%%%%%%%%% method 2: using PCA  
if(isPCA==1) 
%%% training: input 
[COEFF,SCORE_in,latent_in]= 

princomp(zscore(alldata)); 
in = SCORE_in(pt,:)'; 
in = in(1:10,:); 
%%% test::input 
[COEFF,SCORE_test,latent_test]= 

princomp(zscore(alldata)); 
ActIn = SCORE_test(nd+1:nd*2,:)';  
ActIn = ActIn(1:10,:); 
end 
%% output for training and testing 
out=zeros(1,nd); 
m = alldata(pt,10)'; 
out = genDaylightOut(m,nd,outMode_train); 
%%% testing: output: 
m2 = alldata(nd+1:nd*2,10)'; 
ActOut_noscale = m2;  
ActOut_scale01= 

genDaylightOut(m2,nd,outMode_scale01);  
%% train 
aaa = trainNeuralnetworkFcn(net,in,out); 
  
%% test::training 
PreOut_noscale = aaa(ActIn); % actual number 
PreOut_scale01= 

genDaylightOut(PreOut_noscale,nd,outMode_scale01); % 
scale the data 

mseCon = sqrt( sum((PreOut_noscale - 
ActOut_noscale).^2)/nd); 

% accuracy: case 2: classification 
t1 = (PreOut_scale01 - ActOut_scale01 )==0; 
mseClass01 = sum( t1) / nd; %% calcualte the accuracy 
mseClass02 = sqrt( sum((PreOut_scale01 - 

ActOut_scale01).^2)/nd); 
%% neural network function 
function aaa = trainNeuralnetworkFcn(in, out) 
learnRate = 0.05; 
epoch =100; 
error = zeros(1,epoch); 
batchProcess = false; 
hiddeNode = ones(10,1); 
outputNode=ones(1,1); 
deltaIW = cell(100); 
for i=1:epoch 
for j=1:nSample 
hiddenNode = tansig(IW*input(:,j));% hiddenNode = 

11 X 1, IW,OW is row vector 
outputNode= tansig(OW*hiddenNode); 
deltaOW(:,j)= learnRate*(output(j)-outputNode)*(1-

outputNode)*(1+outputNode)/2*hiddenNode; 
deltaIW{j} =( learnRate*(output(j)-outputNode)*(1-

outputNode)*(1+outputNode)/2*OW'.*(1-
hiddenNode(1:10)).*hiddenNode(1:10) )* input(:,j)'; 

if(~batchProcess) 
OW = deltaOW(:,j)'+OW; 
IW = IW + deltaIW{j}; 
end 
end 
%batch processing 
if(batchProcess) 
OW = sum(deltaOW, 2)'+OW; 
deltaIW2 = zeros(10,2); 
for m=1:nSample 
deltaIW2 = deltaIW2 + deltaIW{j}; 
end 
IW = IW + deltaIW2; 
end 
end 
end 
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